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Predictions of steady state peak and trough serum gentamicin con-
centrations were compared between a traditional population kinetic
method using the computer program NONMEM to an empirical
approach using neural networks. Predictions were made in 111 pa-
tients with peak concentrations between 2.5 and 6.0 pg/ml using the
patient factors age, height, weight, dose, dose interval, body surface
area, serum creatinine, and creatinine clearance. Predictions were
also made on 33 observations that were outside the 2.5 and 6.0 pg/ml
range. Neural networks made peak serum concentration predictions
within the 2.5-6.0 ng/ml range with statistically less bias and com-
parable precision with paired NONMEM predictions. Trough serum
concentration predictions were similar using both neural networks
and NONMEM. The prediction error for peak serum concentrations
averaged 16.5% for the neural networks and 18.6% for NONMEM.
Average prediction errors for serum trough concentrations were
48.3% for neural networks and 59.0% for NONMEM. NONMEM
provided numerically more precise and less biased predictions when
extrapolating outside the 2.5 and 6.0 pg/ml range. The observed
peak serum concentration distribution was multimodal and the neu-
ral network reproduced this distribution with less difference be-
tween the actual distribution and the predicted distribution than
NONMEM. It is concluded that neural networks can predict serum
drug concentrations of gentamicin. Neural networks may be useful
in predicting the clinical pharmacokinetics of drugs.

KEY WORDS: neural networks; NONMEM; pharmacokinetics;
prediction; gentamicin.

INTRODUCTION

Pharmacokinetic models predict plasma drug concentra-
tions based on theoretical models of drug distribution and
elimination. They require assumptions about the physical
principles and laws governing the system. This theoretical
approach fails when these underlying laws or principles are
not sufficiently understood or known to be encoded into a
set of relationships. Neural networks use an empirical ap-
proach for prediction and are based on observations of the
system to discover relationships from the system’s recorded
behavior.

Neural computing is an attempt to build mathematical
models that mimic the computing power of the human brain.
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Report

Therefore, the terminology and graphical representations of
neural computing are similar to the nervous system. A com-
prehensive and detailed analysis of the multilayer feed for-
ward network that was used can be found elsewhere (1). A
detailed mathematical discussion of neural networks in ap-
plied pharmacology has been reported by Veng Pedersen and
Modi (2).

A neural network was used to predict peak and trough
gentamicin serum concentrations based on empirical data
and compared these results to predictions using nonlinear
mixed effect modeling (NONMEM). The hypothesis that
neural networks are capable of predicting peak and trough
serum concentrations with bias and precision equal to that of
a NONMEM approach was tested. Gentamicin is used as a
model drug which follows linear pharmacokinetics and for
which the relationship between the pharmacokinetic param-
eters and covariates are known.

METHODS

This study was performed on data obtained from the
clinical dosing services of the Veterans Administration Med-
ical Center (VAMC) in Louisville, KY. Data were collected
on 144 patients who had received gentamicin and for whom
the pharmacy was consulted for dosage adjustments. The
information recorded was the patient’s age, height, weight,
serum creatinine, dose, dose/weight, dose interval, peak se-
rum gentamicin concentration, and trough serum gentamicin
concentration. Some patients received several different
steady-state doses of gentamicin and had corresponding
peak and trough concentrations. These new doses were
treated as new patients for the purpose of prediction. All
patients were male and had both a measured peak and trough
gentamicin serum concentration. The actual timing of the
peak and trough samples were not recorded in all of the
patients. Therefore, the timing of all the peaks for the anal-
ysis were set to 1 hour after the beginning of the infusion and
troughs at the end of the dosing interval. Values for creati-
nine clearance (Clcr) and body surface area (BSA) were cal-
culated using the following formulas (1):

cl ~ 140—age -
Cr_—Scr equation
(weight)>*P«(height)®7+71.84
A= equation 2

10,000

where Cler is in ml/min/1.73m?, BSA is in m?, Scr is in mg%,
weight is in kg, and height is in cm. The dosing interval was
encoded into two new variables named ‘‘eight’’ and
“twelve’’. The variable ‘‘eight’” had a value of 1 if the dosing
interval was every eight hours and 0 if the dosing interval
was every twelve hours. The variable *‘twelve’ was coded
to be opposite the value of variable “‘eight’’.

The data were examined to determine the distribution of
peak concentrations within the population as shown in Fig-
ure 1. From these data a subset was constructed containing
peak concentrations between 2.5 and 6.0 pg/ml where suffi-
cient data exist to train the neural network and was called
the training range. This subset was formed since neural net-
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Fig. 1. Distribution of peak gentamicin serum concentrations in 144

patients with the training range shown between 2.5 and 6.0 pg/mi.

work training relies on sufficient data distributed through the
output range. The network may not predict well in areas
where there are few data with which to train the network.
Concentrations greater than 6.0 pg/ml or less than 2.5 pg/ml
were predicted following the development of the neural net-
work and NONMEM models to test the ability of these
methods to extrapolate outside of the training range. The
training range contained 111 observations. These 111 obser-
vations were sorted by peak concentration in ascending or-
der. The data were then divided into five data sets (DS1-
DSS) containing approximately 22 records each. The peak
distribution of data in each of the data sets was as nearly the
same as possible.

Four of the five data sets described in the above para-
graph were combined to create a training data set containing
approximately 89 peak and trough pairs along with the cor-

responding dosing information and covariates. The data set-

that was withheld was used for testing and contained approx-
imately 22 peak and trough pairs along with the correspond-
ing dosing information and covariates. This process was re-
peated a total of five times so that all the data were withheld
from training at some time. This resulted in 5 training data
sets and S testing data sets. The neural network used the
training set to adjust the weights of the input variables.
NONMEM used the training set to determine the population
values of clearance and volume of distribution. ,
Neural Networks. The basic processing element in neu-
ral computing is the neuron. The neuron is responsible for
the summation of all weighted inputs and either the linear or
nonlinear mapping performed on this weighted sum. Neural
Works Professional II/Plus version 5 (Neural Ware, Pitts-
burgh, PA) was used to create the neural networks. A feed-
forward, multilayer neural network with a modified learning
rule, extended delta bar delta as the error back-propagation
technique was constructed (2,3). A hyperbolic tangent was
used as the transfer function. Inputs to-the neural network
consisted of age, height, weight, dose, dose interval, dose/
weight, eight (0,1), twelve(0,1) serum creatinine, creatinine
clearance, and body surface area. A hidden layer of 5 neu-
rons which was fully connected to the input and output lay-
ers was used. The output layer was a single neuron and
predicted either peak or trough serum gentamicin concen-
tration. Separate neural networks were created for the pre-
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diction of peak concentrations and for the prediction of
trough concentrations. The outputs from each neuron prop-
agated in one direction from the input through the hidden
layer to the output layer with no recirculation. The error that
occurred when the network predicted output was different
from the measured output was used to adjust the weights of
the network by means of back-propagation. Back-
propagation is the process of dividing the responsibility for
the prediction error back through the network and perform-
ing meaningful weight adjustments. The weights operated as
the memory components of the network and were modified
to improve prediction. One group of networks was devel-
oped with the output layer consisting of one neuron for the
prediction of peak concentrations and a second group of the
prediction of trough concentrations. This network architec-
ture is shown in Figure 2.

There are three phases in neural computing; training,
testing, and applying. During the training phase, the weights
that connect the neurons are adjusted to predict the desired
output. Supervised training, where the network was shown
input data with the associated outputs during training was
used. Data from the training set were presented to the net-
work and the average error was computed over an epoch. An
epoch is the number of training steps performed, over which
the mean training error is computed. Several epoch sizes
were evaluated in order to improve convergence rate and
avoid local minimum. In general, epoch sizes much less than
75 resulted in divergence of the neural network and epoch
sizes much greater than 75 resulted in memorization of the
training set and a subsequent loss in the ability to generalize.
The weights were adjusted at the end of the epoch. The
network weights were repeatedly adjusted until the objective
function was minimized or by limiting the number of training
records presented to the network to 100,000. The objective
function used was root mean square error. The root mean
square error is the square root of the mean squared predic-
tion error. The weights were then fixed and the testing phase
began.

During the testing phase, the network was tested for its
ability to generalize to the prediction of serum gentamicin
concentrations on data not seen by the network previously.
Test data were presented to the network in one pass. The
network predicted peak or trough serum gentamicin concen-
trations. The prediction error was calculated to determine
the ability of the network to generalize on the new data.

NEURAL NETWORK LAYERS

INPUT
AGE
HEIGHT
WEIGHT
DOSE
DOSEMWEIGHT
INTERVAL
EIGHT
TWELVE
BSA

SCR
CRCL

HIDDEN OUTPUT

PEAK OR
TROUGH SERUM
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Fig. 2. Multilayer, feedforward, neural network design used in the
prediction of gentamicin serum peak or trough concentrations.
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During the application phase the neural network weights are
fixed and the model is used to predict future events.

Peak and trough gentamicin predictions were performed
by different networks. Five networks were created for the
prediction of peak concentration and five networks were cre-
ated for the prediction of trough concentration. Peak neural
network 1 was trained with data from DS2-DSS5 and tested
with DSI1, trough neural network 5 was trained with data
from DS1-DS4 and tested with DS1. All data were tested in
a similar fashion. Final predictions were combined into one
file for testing.

Population kinetics. The predictive performance of the
neural network has compared to predictions based on pop-
ulation estimates (4). The population pharmacokinetic anal-
ysis was performed using nonlinear mixed effects modeling
as implemented by NONMEM version 4. Fixed effects, the
predictors used in the neural network development, were
added to the model and tested for their significance in de-
creasing the objective function. These covariates tested in
the NONMEM model were age, height, weight, dose, dose
interval, dose/weight, serum creatinine, creatinine clear-
ance, and body surface area. Initially, a two compartment
model was tested but NONMEM was unable to provide
meaningful estimates for several of the pharmacokinetic pa-
rameters. A one compartment model (ADVANI1) with an
additive error model was most descriptive of the data. A
proportional error model was tested but did not perform as
well as the additive model. The same data that was used for
the training of the neural network was used to determine the
population pharmacokinetic parameters using NONMEM.
The final NONMEM model is shown below:

TVCL = 6; + 63+Crcl
TVV = 0, + 04+WEIGHT

CL = TVCL*(1+m;) equation 3
V = TVV(l +72)
Y=F+ ¢

where TVCL, is the typical value of clearance; TVV, is the
typical value of volume of distribution; CL, is clearance; V,
is volume of distribution; 0, m, and € are model parameters;
Y, is the observed concentration; and F is the model pre-
dicted concentration. After the final model was determined
and converged, the initial estimates were set equal to the
final estimates, the maximum number of evaluations was set
to 0, the data set was switched to the test data set, and
population based predictions were obtained on the test data
sets labeled DS1-DSS5. Population predictions for the test set
were recorded following the NONMEM evaluation. Five
predictions were performed on DS1-DSS5 using the popula-
tion parameters determined from fitting the remaining four
datasets that were combined to create the training data set.

Statistical Analysis. A statistical analysis of the predic-
tions for the measurement of precision and bias were per-
formed. The following formula and abbreviations are those
used by Sheiner and Beal (5). The prediction error (pe) was
calculated as the prediction—observed for each of the N
observations. Mean prediction error is a measure of bias and
imparts information about the relative over- or under-
prediction of the method used. Mean squared prediction er-
ror (MSE) and root mean squared prediction error (RMSE)
were used as the measures of precision calculated as:
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N
1
MSE =N2 pel s RMSE = \/MSE  equation 4
i=1

Precision gives information about the size of the miss in
prediction. Mean prediction error (ME) was used as the mea-
sure of bias and it was calculated as:

N
1
ME = JTIE pe; equation 5
i=1

PE was also reported as a percentage of the predicted value
and as the absolute value of the pe as:

pe(%) = 1()Gprediction — observed

— equation 6
prediction

|prediction — observed|

lpe(%)| = 100 equation 7

prediction

Varvel calculated four statistical measures of perfor-
mance of a predictive system for computer controlled infu-
sion pumps (6). These measures were also calculated as they
would apply to this specific prediction problem. Absolute
performance error (APE) is another name for the absolute
prediction error and is calculated as in equation 7. The me-
dian value of APE was reported to overcome the effect of
any asymmetric distribution of the absolute value of the pre-
diction error data. APE is a measure of precision. The slope
of the linear regression of pe(%) versus the predicted value
was used as a measure of divergence. Divergence is a mea-
sure of the expected systematic concentration-related devi-
ation in the data. Varvel et al. calculated divergence using
the absolute value of the prediction error. Divergence was
calculated on these data as a regression of pe vs. predicted.
Median prediction error (MDPE) was used as a measure of
bias. Measures of bias (ME) and precision (RSE, APE) were
tested by a paired t-test.

Density estimates were calculated on the observed, neu-
ral network predicted, and NONMEM predicted peak and
trough gentamicin serum concentrations using S-PLUS ver-
sion 3.1 (Statistical Sciences, Inc., Seattle, WA). Density
plots were made with the width parameter set equal to 1.

RESULTS

The distribution of serum gentamicin peak concentra-
tions in the 144 subjects are shown in Figure 1. One hundred
eleven of these subjects had peak concentrations between
2.5 and 6.0 pg/ml and were used for training the neural net-
work or fit using NONMEM. Table 1 contains a list of the
descriptive statistics for the predictors in the 111 patients
used in the neural network or NONMEM model. Figure 3
shows the prediction results of the cross validation experi-
ments where 4/5 of the data were used to train or fit and 1/5
of the data were predicted for peak and trough concentra-
tions. Figure 4 illustrates the resulting residuals of these pre-
dictions. Regression of the residuals against predicted con-
centration as a measure of divergence was performed. Both
prediction methods resulted in over-prediction at low peak
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Table I. Descriptive Statistics of the Predictors Used in the Neural
Network for the 111 Subjects Within the Training Range of 2.5-6.0
wg/ml Gentamicin Peak Concentration

Predictor Mean Median Range STD
Age (yr) 64.2 66.0 31-85 11.0
BSA (m?) 1.88 1.87 1.37-2.76 0.26
Cler (mV/min/1.73 m?) 77.4 73.5 19.0-163.0  26.2
Dose (mg) 88.7 85.0 40-150 23.1
Dose/wght (mg/lb) 0.58 0.54 0.24-1.25 0.17
Height (in) 69.6 70.0 63-76 2.9
SCR (mg%) 1.08 1.00 1.36-9.87 1.46
Weight (Ib) 161.4 153.0 78.4-349.0  46.6

concentrations and under-prediction at high peak concentra-
tions.

Table II upper panel lists the statistical measures used
to make comparisons between the neural network and
NONMEM predictions for the peak gentamicin serum con-
centration. Mean prediction error was used as the measure
of bias and was tested by paired analysis. The neural net-
work predictions in the training range were less biased than
the NONMEM prediction (p=0.037). The average size of
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Fig. 3. Gentamicin serum peak and trough concentration predic-
tions for both NONMEM and neural networks. Solid line represents
the line of identity and dotted line represents the regression line.
Concentrations are in pg/mi.
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Fig. 4. Residual plot obtained from plotting predicted-observed for
both NONMEM and neural networks. The dotted line is the regres-
sion line. In all cases, the regression line has a slope that is signif-
icantly different from zero. Concentrations are in pg/mi and negative
value_s are shown within parenthesis.

the difference in bias was 0.16pg/ml. Squared prediction er-
ror, root mean squared prediction error, or absolute predic-
tion error were used as the measure of precision were tested
by paired analysis. The neural network predictions were nu-
merically more precise, but not statistically so (p=20.058).
The average size of the difference in precision was 0.11
pg/mi.

Table II lower panel lists the statistical measures used
to make comparisons between the neural network and
NONMEM for the trough serum gentamicin concentration
predictions. The mean prediction error was tested by paired
analysis. The neural network trough concentration predic-
tions were no less biased than the NONMEM predictions
(p=0.977). The neural network predictions were no more
precise than the NONMEM trough concentration predic-
tions (p=0.233).

The density plots for the observed, neural network pre-
dicted, and NONMEM predicted peak and trough gentami-
cin serum concentrations are shown in Figure 5. The prob-
ability distribution of peak concentrations was complex, sug-
gesting the presence of several modes. The neural network
was better able to reproduce this complex pattern than was
NONMEM. The probability distribution of trough concen-
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Table II. Comparison of NONMEM and Neural Network Peak and Trough Gentamicin Serum Con-
centration Predictors Based on Training or Fitting with 4/5 of the Data and Prediction in 1/5 of the Data

Peak predictions

NONMEM Neural network
Mean Mean
(median) 95% Cl1 (median) 95% ClI
PE* 0.14 (0.22) —0.03, 0.31 —0.02 (—0.03) -0.18, 0.13
PE (%) 1.04 (5.54) —3.42,5.49 —-2.45(-0.69) -6.62, 1.72
RSE (APE)+ 0.74 (0.65) 0.64, 0.84 0.63 (0.56) 0.53, 0.73
SPE 0.83 (0.42) 0.63, 1.03 0.67 (0.31) 0.46, 0.87
APE (%) 18.6 (15.2) 13.7, 19.3 16.5 (13.5) 13.7, 19.3
Trough predictions
NONMEM Neural network
Mean Mean
(median) 95% Cl1 (median) 95% CI
PE** 0.049 (0.163) —0.115,0.214 0.002 (0.138) —0.145, 0.149
PE (%) —14.5(16.9) -31.1,2.2 —11.1(9.8) -23.8,1.7
RSE (APE)+ + 0.67 (0.59) 0.57,0.78 0.58 (0.43) 0.48, 0.68
SPE 0.76 (0.35) 0.52, 1.00 0.60 (0.18) 0.35, 0.86
APE (%) 59.0 (38.7) 46.4,71.7 48.3 (36.0) 39.1, 57.7

*p = 0.036; +p = 0.058; **p = 0.977; + +p = 0.233.

Values shown are based on the predictions in 111 subjects.

PE, prediction error; SPE, squared prediction error; RSE, root squared error; APE, absolute predic-
tion error; PE (%), percent prediction error; APE (%), percent absolute prediction error.

trations appeared uni-modal and skewed. Both the neural
network and NONMEM were able to reproduce this distri-
bution.

The ability of the neural network and NONMEM to
predict outside the training data range was tested by predict-
ing peak and trough gentamicin concentrations outside the
range of 2.5-6.0 pg/ml. The NONMEM peak predictions
were numerically less biased by a mean difference of 0.20 =
0.69 pg/ml (p=0.073) and numerically more precise by
a mean difference of -0.19 = 0.63 pg/ml (p=0.098).
NONMEM trough predictions were no less biased then the
neural network with a mean difference of - 0.01 + 0.85 pg/ml
(p=0.942) and were numerically more precise by a differ-
ence of 0.19 * 0.53 pg/ml (p=0.051).

DISCUSSION

Reidenberg recently summarized advances in clinical
pharmacology (7). New drug compounds with unique mech-
anisms of action demand novel research approaches. Under-
standing the disease processes, the mechanisms of drug ac-
tion, the relationships between patient and drug factors, and
the response to therapy continue to be the compelling forces
in clinical pharmacokinetics. Because clinicians must decide
how much drug a patient should receive, prediction contin-
ues to be an important specialty for clinical pharmacologists.
A new approach to prediction is described that is based on
empirical relationships using a model drug, gentamicin.

To accurately forecast resulting drug levels, the entire
drug dosing history, several aspects of the drug’s disposition
in the body, and various patient-related factors must be con-

sidered. As a result, prediction is a complex and multi-input,
dynamic system. Computational intelligence stored in the
neural network was used for the empirical prediction of dos-
ing for gentamicin. The intelligence acquired from data driv-
ing the network learning was successful in predicting result-
ing drug concentrations. The neural network predictions
matched the predictive performance of the NONMEM ap-
proach. Peak predictions were statistically less biased
(p=0.036). The reason for the decreased bias may be related
to the ability of the neural network to reproduce the complex
distribution of peak gentamicin serum concentrations. The
neural network predicted trough concentrations with the
same bias and precision as NONMEM. When both methods
were used to predict gentamicin concentrations outside of
the range of data the NONMEM predictions were numeri-
cally more precise and less biased.

There are two primary approaches to prediction. Rules
or equations can be developed to describe and predict a
future state. Nonlinear mixed effects modeling is an example
of a theoretical approach. This approach requires under-
standing the physical principles and laws governing the sys-
tem, given the history of the system and its current state.
However, this theoretical approach fails when these under-
lying principles are not sufficiently understood to be en-
coded into a set of relationships. The theoretical approach
for predicting the dose of therapeutic agents depends on the
use of pharmacokinetic models that mathematically describe
the behavior of the drug in a test population. Often, this test
population does not represent the population to which the
drug is administered. When drug disposition does not follow
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Fig. 5. Density plots of the peak and trough gentamicin serum con-
centrations from the observed data, the NONMEM predictions, and
the neural network predictions. The dotted line is the observed den-
sity and the solid line is the predicted density.

these rigid rules, plasma drug concentrations and drug ef-
fects may be outside the therapeutic range. NONMEM was
used since it is more flexible in determining the rules of drug
disposition by employing a structural-statistical model and
would represent a standard for comparison.

Mixed effect modeling has been applied to predicting
the pharmacokinetics of gentamicin primarily in the pediatric
population where it is useful in describing parameters like
clearance and volume of distribution (8—11). Mixed effect
modeling also accounts for the variability between patient by
modeling the influence of covariates and residual variability.
These previous studies have demonstrated how one might
successfully model the effects of covariates like renal func-
tion and body weight with clearance and volume of distribu-
tion.

To avoid toxicity or therapeutic inefficacy, clinicians ad-
just dosages empirically. Empirical prediction relies on ob-
servation of the system and the discovery of relationships
based on the recorded behavior of the system. A form of
artificial intelligence, neural networks, is an example of an
empirical method. This approach allows estimation of future
values through processing many observations and discover-
ing patterns in the data. The use of multiple and possible
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redundant inputs in the empirical approach allows the neural
network to be less rigid than the theoretical approach. It is
the additional information contained in these other inputs
that allow the neural network to improve a prediction.

Investigators report successful applications of feedfor-
ward network architectures to such tasks as economic fore-
casting, as in the prediction of currency exchange rates and
stock market trends (12,13), and technical forecasting, like
helicopter gearbox failure and electric load distribution
(14,15). Some studies demonstrate that neural network pre-
dictors offer a more flexible modeling environment than any
of the traditional approaches, including statistical methods
(16). Despite convincing results in many areas, little has
been done using neural networks to predict drug behavior
17-19).

In the current report, a neural network approach for the
prediction of drug levels has been compared to mixed-effects
modeling. The neural network approach has several advan-
tages. This is an empirical approach which does not require
the relationship between the covariates and the prediction to
be encoded. Neural networks do not require assumptions
about the distribution of the data nor do the covariates need
to be linearly independent or have a low correlation. There-
fore, inputs can be used that are highly correlated such and
age, serum creatinine, and creatinine clearance and inputs
can be used that are linearly dependent like the variables
eight and twelve. Use of input data that are redundant or
coded in a binary fashion allows the network the flexibility to
recombine the inputs in the hidden layer in order to improve
prediction. Neural networks do not assume a model for the
behavior of the system and can avoid the problems of model
mis-specification. The disadvantage of the neural network is
its inability to extrapolate outside the range within which it
was trained while NONMEM can assume linear pharmaco-
kinetics, apply a pharmacokinetic model, and perform this
extrapolation. Neural networks are not used to describe the
relationship between covariates and predictions like mixed
effect modeling or to provide a reason for a particular ob-
servation. Rather, a neural network is used to predict future
events given information which would be available at the
time a physician sees a patient.

These data show that neural networks can be con-
structed to predict drug behavior, empirically. These net-
works performed well when compared to a traditional phar-
macokinetic model of a drug that follows straight-forward,
well known principles of disposition in the body. Neural net-
works can not be used to extrapolate outside the range for
which they have been trained. The role of neural networks in
predicting the behavior of those drugs which exhibit com-
plex disposition remains to be determined as do their role in
pharmacokinetic and pharmacodynamic modelling.
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